Commit 660c9d2a authored by Alexander Henkel's avatar Alexander Henkel
Browse files

bugfixing

parent a4241dd1
# Created by .ignore support plugin (hsz.mobi)
### Python template
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
*.egg-info/
.installed.cfg
*.egg
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*,cover
.hypothesis/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# IPython Notebook
.ipynb_checkpoints
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# dotenv
.env
# virtualenv
venv/
ENV/
# Spyder project settings
.spyderproject
# Rope project settings
.ropeproject
### VirtualEnv template
# Virtualenv
# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
[Bb]in
[Ii]nclude
[Ll]ib
[Ll]ib64
[Ll]ocal
[Ss]cripts
pyvenv.cfg
.venv
pip-selfcheck.json
### JetBrains template
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User-specific stuff
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/**/usage.statistics.xml
.idea/**/dictionaries
.idea/**/shelf
# AWS User-specific
.idea/**/aws.xml
# Generated files
.idea/**/contentModel.xml
# Sensitive or high-churn files
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
.idea/**/dbnavigator.xml
# Gradle
.idea/**/gradle.xml
.idea/**/libraries
# Gradle and Maven with auto-import
# When using Gradle or Maven with auto-import, you should exclude module files,
# since they will be recreated, and may cause churn. Uncomment if using
# auto-import.
# .idea/artifacts
# .idea/compiler.xml
# .idea/jarRepositories.xml
# .idea/modules.xml
# .idea/*.iml
# .idea/modules
# *.iml
# *.ipr
# CMake
cmake-build-*/
# Mongo Explorer plugin
.idea/**/mongoSettings.xml
# File-based project format
*.iws
# IntelliJ
out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Cursive Clojure plugin
.idea/replstate.xml
# SonarLint plugin
.idea/sonarlint/
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties
# Editor-based Rest Client
.idea/httpRequests
# Android studio 3.1+ serialized cache file
.idea/caches/build_file_checksums.ser
# idea folder, uncomment if you don't need it
# .idea
*.bundle.*
lib/
node_modules/
*.egg-info/
.ipynb_checkpoints
*.tsbuildinfo
# Created by https://www.gitignore.io/api/python
# Edit at https://www.gitignore.io/?templates=python
### Python ###
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# Mr Developer
.mr.developer.cfg
.project
.pydevproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# OS X stuff
*.DS_Store
# End of https://www.gitignore.io/api/python
_temp_extension
junit.xml
[uU]ntitled*
notebook/static/*
!notebook/static/favicons
notebook/labextension
notebook/schemas
docs/source/changelog.md
docs/source/contributing.md
# playwright
ui-tests/test-results
ui-tests/playwright-report
# VSCode
.vscode
This diff is collapsed.
......@@ -424,6 +424,9 @@ class SyntheticDataset(Dataset):
return ax
def randomize_evaluation(self, evaluation_reliability_no=1, evaluation_reliability_yes=1):
super().randomize_evaluation(evaluation_reliability_no, evaluation_reliability_yes)
# self.set_indicators(self.indicators)
class ManualDataset(Dataset):
......
......@@ -79,7 +79,6 @@ class SensorRecorderDataReader:
evaluation_indices[i, 0] = np.argmax(processor[RecordingEntry.ACCELERATION][:, 0] >= ts)
evaluation_indices[i, 1] = evaluations[i, 1]
evaluation_indices[:, 0] = np.floor(evaluation_indices[:, 0] / self.window_shift)
indicators = (manual_hw_indices, evaluation_indices)
return indicators
......
......@@ -3,6 +3,7 @@ import copy
from typing import List
import numpy as np
from personalization_tools.globals import Indicators
from personalization_tools.personalizer import Personalizer
from personalization_tools.dataset_manager import DatasetManager
from personalization_tools.helpers import Evaluation, generate_predictions
......@@ -96,7 +97,6 @@ observed_models = []
model_predictions = dict()
global target_pseudo_model_settings
target_pseudo_model_settings = list(pseudo_model_settings.items())
def gen_name(base_name, additional_info):
......@@ -130,6 +130,9 @@ def calc_relative_training_size():
overall_size /= len(collection)
null_size /= len(collection)
hw_size /= len(collection)
# print({'hw_regions': hw_regions, 'null_regions': null_regions, 'neut_regions': neut_regions})
return {'overall_size': overall_size, 'null_size': null_size, 'hw_size': hw_size, 'hw_regions': hw_regions,
'null_regions': null_regions, 'neut_regions': neut_regions}
......@@ -175,8 +178,8 @@ def train_model(model_name):
if not skip_model and (not skip_existing or model_name not in trainings_manager.database['training_runs'][
training_run_name] or force_model):
print('train:', model_name)
# personalizer.incremental_learn_series_pseudo(collection,
# save_model_as=models_directory + model_name, epochs=100)
personalizer.incremental_learn_series_pseudo(collection,
save_model_as=models_directory + model_name, epochs=100)
if model_name not in trainings_manager.database['training_runs'][training_run_name]:
trainings_manager.database['training_runs'][training_run_name].append(model_name)
else:
......@@ -236,13 +239,13 @@ def start_training():
if 'random' in training_run_name:
target_randoms = list()
global target_pseudo_model_settings
# target_pseudo_model_selection = ['allnoise_correctedhwgt', 'allnoise_correctedscore',
# 'allnoise_correctbydeepconvfilter', 'allnoise_correctbyfcndaefilter',
# 'allnoise_correctbyconvlstmfilter', 'allnoise_correctbyconvlstm2filter',
# 'allnoise_correctbyconvlstm3filter', 'alldeepconv_correctbyconvlstm3filter',
# 'alldeepconv_correctbyconvlstm2filter6', 'alldeepconv_correctbyconvlstm3filter6']
target_pseudo_model_selection = ['allnoise_correctedhwgt', 'allnoise_correctedscore',
'allnoise_correctbydeepconvfilter', 'allnoise_correctbyfcndaefilter',
'allnoise_correctbyconvlstmfilter', 'allnoise_correctbyconvlstm2filter',
'allnoise_correctbyconvlstm3filter', 'alldeepconv_correctbyconvlstm3filter',
'alldeepconv_correctbyconvlstm2filter6', 'alldeepconv_correctbyconvlstm3filter6']
target_pseudo_model_selection = ['alldeepconv_correctbyconvlstm3filter6']
# target_pseudo_model_selection = ['allnoise_correctbyconvlstm2filter', 'alldeepconv_correctbyconvlstm3filter6']
target_pseudo_model_settings = [(key, value) for key, value in pseudo_model_settings.items() if
key in target_pseudo_model_selection]
......@@ -257,7 +260,7 @@ def start_training():
for target_random in target_randoms:
info = {'random_no': target_random[0], 'random_yes': target_random[1]}
print('random target:', target_random)
#print('random target:', target_random)
for dataset in collection:
if isinstance(dataset, SyntheticDataset):
......@@ -281,11 +284,12 @@ def start_training():
# evaluation_reliability_no=target_random[0],
# evaluation_reliability_yes=target_random[1],
# clear_just_covered=False)
print(dataset.indicators[1])
hw_indicators_hw = dataset.get_indicators()[1][dataset.get_indicators()[1][:, 1] == Indicators.HAND_WASH]
#print(hw_indicators_hw.shape)
if dataset.name not in indicator_backups:
indicator_backups[dataset.name] = (dataset.indicators[0].copy(), dataset.indicators[1].copy())
indicator_backups[dataset.name] = (dataset.get_indicators()[0].copy(), dataset.get_indicators()[1].copy())
else:
dataset.indicators = (indicator_backups[dataset.name][0].copy(), indicator_backups[dataset.name][1].copy())
dataset.set_indicators((indicator_backups[dataset.name][0].copy(), indicator_backups[dataset.name][1].copy()))
dataset.randomize_evaluation(evaluation_reliability_no=target_random[0],
evaluation_reliability_yes=target_random[1])
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment