"Load base model: ./data/DeepConvLSTMA_statedict.pt\n",
"Train on: e5fbd0a6-11c9-409b-a2ba-0d392fdb0af6\n",
"tensor([ 0.5024, 102.6791])\n",
"Starting Training cuda\n"
"Starting Training cuda\n",
"use regularization\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4f507dad01f441128b58e8beddb68b47",
"model_id": "933588d83bf2476da5dcf7c05c8a5de9",
"version_major": 2,
"version_minor": 0
},
...
...
@@ -1159,20 +1160,20 @@
"name": "stdout",
"output_type": "stream",
"text": [
"loss before training: 0.09575944393873215\n",
"F1-Score Val:\t0.2857142857142857\n",
"spec Val 0.9838187702265372\n",
"F1-Score Val:\t1.0\n",
"spec Val 1.0\n",
"sens Val 1.0\n",
" \n",
"Train on: daf902bc-01a6-43c5-a04e-f784c8f13c49\n",
"tensor([ 0.5029, 87.6667])\n",
"Starting Training cuda\n"
"Starting Training cuda\n",
"use regularization\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b3a0ae8e9184435eb165dd660ecf79f9",
"model_id": "74ce92ebb7344a81b66fd7629b823d86",
"version_major": 2,
"version_minor": 0
},
...
...
@@ -1187,21 +1188,20 @@
"name": "stdout",
"output_type": "stream",
"text": [
"loss before training: 0.05737384781241417\n",
"stopped early! 55 0.06454429057107043\n",
"F1-Score Val:\t0.0\n",
"spec Val 0\n",
"sens Val 0\n",
" \n",
"Train on: 28fd37cc-c752-45ec-8adb-f6c008f72754\n",
"tensor([ 0.5012, 204.2273])\n",
"Starting Training cuda\n"
"Starting Training cuda\n",
"use regularization\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e661f1cab1034fdc80e208fbd69b47ba",
"model_id": "d4f82d5349764403b74777b14fc42dee",
"version_major": 2,
"version_minor": 0
},
...
...
@@ -1216,20 +1216,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
"loss before training: 0.08396054059267044\n",
"stopped early! 15 0.0017458487796283761\n",
"F1-Score Val:\t0.0\n",
"spec Val 0\n",
"sens Val 0\n",
" \n",
"Train on: 8af26275-c037-4291-ab79-dcb050a4686d\n",
"tensor([ 0.5015, 161.8913])\n",
"Starting Training cuda\n"
"Starting Training cuda\n",
"use regularization\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "34b6093d8b9349548b669fda494414b8",
"model_id": "7f6e5a15cd6346cba9e38b67e6d7955b",
"version_major": 2,
"version_minor": 0
},
...
...
@@ -1244,20 +1245,29 @@
"name": "stdout",
"output_type": "stream",
"text": [
"loss before training: 0.04854266345500946\n",
"stopped early! 15 0.00018242024779790573\n",
"F1-Score Val:\t0.0\n",
"spec Val 0\n",
"sens Val 0\n",
" \n",
"Train on: 2252f3d0-cd90-42b4-9b4e-4172ed5fa847\n",
"tensor([ 0.5021, 121.3232])\n",
"Starting Training cuda\n"
"Starting Training cuda\n",
"use regularization\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/alex/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1492: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no true nor predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2a41456fb0364c33be7206ccc6152fe9",
"model_id": "6f8fca3e4ea945f8ab87df8081342fcd",
"version_major": 2,
"version_minor": 0
},
...
...
@@ -1272,16 +1282,25 @@
"name": "stdout",
"output_type": "stream",
"text": [
"loss before training: 0.06260821223258972\n",
"F1-Score Val:\t0.2857142857142857\n",
"spec Val 0.9888143176733781\n",
"sens Val 1.0\n",
"F1-Score Val:\t0.0\n",
"spec Val 0\n",
"sens Val 0\n",
" \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/alex/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1492: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no true nor predicted samples. Use `zero_division` parameter to control this behavior.\n",
Load base model: ./data/DeepConvLSTMA_statedict.pt
Train on: e5fbd0a6-11c9-409b-a2ba-0d392fdb0af6
tensor([ 0.5024, 102.6791])
Starting Training cuda
use regularization
loss before training: 0.09575944393873215
F1-Score Val: 0.2857142857142857
spec Val 0.9838187702265372
F1-Score Val: 1.0
spec Val 1.0
sens Val 1.0
Train on: daf902bc-01a6-43c5-a04e-f784c8f13c49
tensor([ 0.5029, 87.6667])
Starting Training cuda
use regularization
loss before training: 0.05737384781241417
stopped early! 55 0.06454429057107043
F1-Score Val: 0.0
spec Val 0
sens Val 0
Train on: 28fd37cc-c752-45ec-8adb-f6c008f72754
tensor([ 0.5012, 204.2273])
Starting Training cuda
use regularization
loss before training: 0.08396054059267044
stopped early! 15 0.0017458487796283761
F1-Score Val: 0.0
spec Val 0
sens Val 0
Train on: 8af26275-c037-4291-ab79-dcb050a4686d
tensor([ 0.5015, 161.8913])
Starting Training cuda
use regularization
loss before training: 0.04854266345500946
stopped early! 15 0.00018242024779790573
F1-Score Val: 0.0
spec Val 0
sens Val 0
Train on: 2252f3d0-cd90-42b4-9b4e-4172ed5fa847
tensor([ 0.5021, 121.3232])
Starting Training cuda
use regularization
/home/alex/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1492: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no true nor predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(
loss before training: 0.06260821223258972
F1-Score Val: 0.2857142857142857
spec Val 0.9888143176733781
sens Val 1.0
F1-Score Val: 0.0
spec Val 0
sens Val 0
/home/alex/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1492: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no true nor predicted samples. Use `zero_division` parameter to control this behavior.
"Load base model: ./data/HandWashingDeepConvLSTMA_trunc_10.pt\n",
"Train on: 10_generated_1\n",
"tensor([ 0.5049, 51.6770])\n",
"Starting Training cuda\n",
"use regularization\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d458368f9e9e4f8981dcdf10dab204b3",
"model_id": "10f54099895a49bc890c0b6c82b109fc",
"version_major": 2,
"version_minor": 0
},
...
...
@@ -1191,20 +1193,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
"loss before training: 0.2243620604276657\n",
"F1-Score Val:\t0.20512820512820512\n",
"spec Val 0.9117647058823529\n",
"sens Val 0.8\n",
"stopped early! 15 0.07654275695616324\n",
"F1-Score Val:\t0.5\n",
"spec Val 0.9923664122137404\n",
"sens Val 1.0\n",
" \n",
"Train on: 01_generated_3\n",
"tensor([ 0.5052, 48.5152])\n",
"Starting Training cuda\n"
"Train on: 10_generated_2\n",
"tensor([ 0.5022, 112.9776])\n",
"Starting Training cuda\n",
"use regularization\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "016c01079f064fefa98495f9fe6da179",
"model_id": "59791d10726d497db1503f09c9e9c271",
"version_major": 2,
"version_minor": 0
},
...
...
@@ -1219,20 +1222,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
"loss before training: 0.34959739446640015\n",
"F1-Score Val:\t0.125\n",
"spec Val 0.88268156424581\n",
"sens Val 1.0\n",
"stopped early! 15 0.13930007410790635\n",
"F1-Score Val:\t0.6666666666666666\n",
"spec Val 1.0\n",
"sens Val 0.5\n",
" \n",
"Train on: 01_generated_4\n",
"tensor([ 0.5074, 34.3200])\n",
"Starting Training cuda\n"
"Train on: 10_generated_3\n",
"tensor([ 0.5065, 39.0458])\n",
"Starting Training cuda\n",
"use regularization\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d21334ced4eb4e408aa0cd5af9f3fb81",
"model_id": "28cb92d457a84adba4ca784e7b45ac12",
"version_major": 2,
"version_minor": 0
},
...
...
@@ -1247,44 +1251,25 @@
"name": "stdout",
"output_type": "stream",
"text": [
"loss before training: 0.190108522772789\n",
"F1-Score Val:\t0.1702127659574468\n",
"spec Val 0.8981723237597912\n",
"sens Val 1.0\n",
" \n",
"Train on: 01_generated_5\n",
"tensor([ 0.5049, 51.0110])\n",
"Starting Training cuda\n"
"stopped early! 15 0.04892555119461858\n",
"F1-Score Val:\t0.0\n",
"spec Val 0\n",
"sens Val 0\n",
" \n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "107d2c9db6194fceb3b8d365d1535d0f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/100 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"name": "stderr",
"output_type": "stream",
"text": [
"loss before training: 0.5048531293869019\n",
"F1-Score Val:\t0.20689655172413793\n",
"spec Val 0.9258064516129032\n",
"sens Val 1.0\n",
" \n"
"/home/alex/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1492: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no true nor predicted samples. Use `zero_division` parameter to control this behavior.\n",